

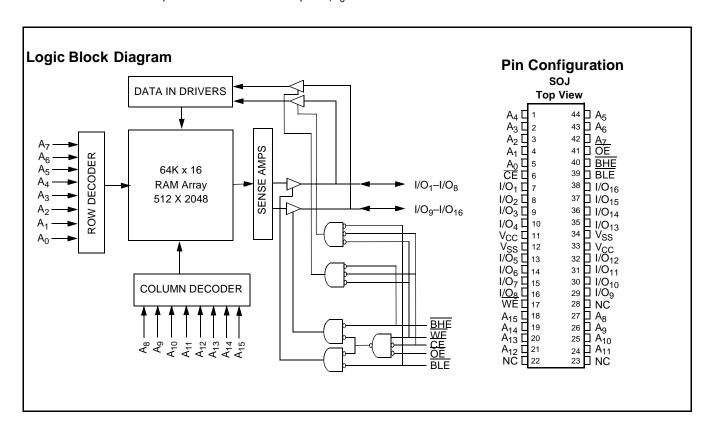
#### **Features**

- High speed
  - $-t_{AA} = 12, 15 \text{ ns}$
- · CMOS for optimum speed/power
- · Automatic power-down when deselected
- Independent control of upper and lower bits
- Available in 400-mil SOJ

#### **Functional Description**

The WCFS1016C1C is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable  $(\overline{CE})$  and Write Enable  $(\overline{WE})$  inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O<sub>1</sub> through I/O<sub>8</sub>), is written into the location specified on the address pins (A<sub>0</sub>


# 64K x 16 Static RAM

through  $A_{15}$ ). If Byte High Enable ( $\overline{BHE}$ ) is LOW, then data from I/O pins (I/O<sub>9</sub> through I/O<sub>16</sub>) is written into the location specified on the address pins ( $A_0$  through  $A_{15}$ ).

Reading from the device is accomplished by taking Chip Enable  $(\overline{\text{CE}})$  and Output Enable  $(\overline{\text{OE}})$  LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O<sub>1</sub> to I/O<sub>8</sub>. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O<sub>9</sub> to I/O<sub>16</sub>. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O<sub>1</sub> through I/O<sub>16</sub>) are placed in a high-impedance state when the device is deselected  $\overline{(CE)}$  HIGH), the outputs are disabled ( $\overline{OE}$  HIGH), the  $\overline{BHE}$  and  $\overline{BLE}$  are disabled ( $\overline{BHE}$ ,  $\overline{BLE}$  HIGH), or during a write operation ( $\overline{CE}$  LOW, and  $\overline{WE}$  LOW).

The WCFS1016C1C is available in 400-mil-wide SOJ packages.



#### **Selection Guide**

|                                   | WCFS1016C1C 12ns | WCFS1016C1C 15ns |
|-----------------------------------|------------------|------------------|
| Maximum Access Time (ns)          | 12               | 15               |
| Maximum Operating Current (mA)    | 140              | 130              |
| Maximum CMOS Standby Current (mA) | 10               | 10               |





#### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage on  $V_{CC}$  to Relative  $\mbox{GND}^{[1]}\,....\,-0.5\mbox{V}$  to +7.0V DC Voltage Applied to Outputs in High Z  $\rm State^{[1]}$ .....-0.5V to  $\rm V_{CC}\text{+}0.5V$ DC Input Voltage<sup>[1]</sup>.....-0.5V to V<sub>CC</sub>+0.5V

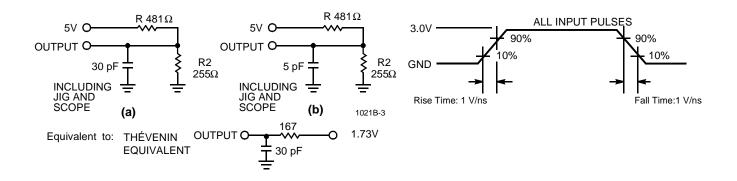
| Current into Outputs (LOW)                             | 20 mA   |
|--------------------------------------------------------|---------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V  |
| Latch-Up Current                                       | >200 mA |

#### **Operating Range**

| Range      | Ambient<br>Temperature <sup>[2]</sup> | V <sub>CC</sub> |
|------------|---------------------------------------|-----------------|
| Commercial | 0°C to +70°C                          | 5V ± 10%        |

# **Electrical Characteristics** Over the Operating Range

|                  |                                                                              | Test<br>Conditions                                                                                                                                                                                                                                                     | WCFS1016C1C 12ns |      | WCFS1016C1C 15ns |      |      |
|------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|------------------|------|------|
| Parameter        | Description                                                                  |                                                                                                                                                                                                                                                                        | Min.             | Max. | Min.             | Max. | Unit |
| V <sub>OH</sub>  | Output HIGH<br>Voltage                                                       | $V_{CC} = Min.,$<br>$I_{OH} = -4.0 \text{ mA}$                                                                                                                                                                                                                         | 2.4              |      | 2.4              |      | V    |
| V <sub>OL</sub>  | Output LOW<br>Voltage                                                        | V <sub>CC</sub> = Min.,<br>I <sub>OL</sub> = 8.0 mA                                                                                                                                                                                                                    |                  | 0.4  |                  | 0.4  | V    |
| V <sub>IH</sub>  | Input HIGH<br>Voltage                                                        |                                                                                                                                                                                                                                                                        | 2.2              | 6.0  | 2.2              | 6.0  | V    |
| V <sub>IL</sub>  | Input LOW<br>Voltage <sup>[1]</sup>                                          |                                                                                                                                                                                                                                                                        | -0.5             | 0.8  | -0.5             | 0.8  | V    |
| I <sub>IX</sub>  | Input Load<br>Current                                                        | $GND \le V_1 \le V_{CC}$                                                                                                                                                                                                                                               | -1               | +1   | -1               | +1   | μΑ   |
| I <sub>OZ</sub>  | Output<br>Leakage<br>Current                                                 | $\begin{array}{l} \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$                                                                                                                                                | -1               | +1   | -1               | +1   | μА   |
| I <sub>OS</sub>  | Output Short $V_{CC} = Max.,$ Circuit $V_{OUT} = GND$ Current <sup>[3]</sup> |                                                                                                                                                                                                                                                                        |                  | -300 |                  | -300 | mA   |
| I <sub>CC</sub>  | V <sub>CC</sub><br>Operating<br>Supply<br>Current                            | $V_{CC} = Max.,$ $I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$                                                                                                                                                                                                            |                  | 140  |                  | 130  | mA   |
| I <sub>SB1</sub> | Automatic CE<br>Power-Down<br>Current<br>—TTL Inputs                         | $\begin{split} & \underbrace{\text{Max.}}_{\text{CC}}, \\ & \text{CE} \geq \text{V}_{\text{IH}} \\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ & \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \\ & \text{f} = \text{f}_{\text{MAX}} \end{split}$ |                  | 40   |                  | 40   | mA   |
| I <sub>SB2</sub> | Automatic CE Power-Down Current —CMOS Inputs                                 | $\begin{array}{l} \frac{\text{Max. V}_{\text{CC}},}{\text{CE}} \geq \\ \text{V}_{\text{CC}} - 0.3\text{V},  \text{V}_{\text{IN}} \geq \\ \text{V}_{\text{CC}} - 0.3\text{V},  \text{or}  \text{V}_{\text{IN}} \leq 0.3\text{V},  \text{f} = 0 \end{array}$             |                  | 10   |                  | 10   | mA   |


- $V_{IL}$  (min.) = -2.0V for pulse durations of less than 20 ns.  $T_A$  is the "Instant On" case temperature. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.



# Capacitance<sup>[4]</sup>

| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 8    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                         | 8    | pF   |

#### **AC Test Loads and Waveforms**

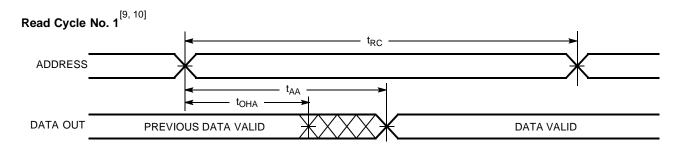


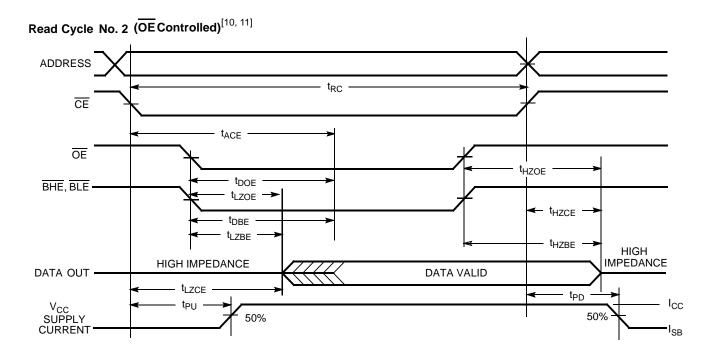
#### Notes:

Tested initially and after any design or process changes that may affect these parameters



# Switching Characteristics<sup>[5]</sup> Over the Operating Range


|                   |                                     | WCFS101 | 6C1C 12ns | WCFS1016C1C 15ns |      |      |
|-------------------|-------------------------------------|---------|-----------|------------------|------|------|
| Parameter         | Description                         | Min.    | Max.      | Min.             | Max. | Unit |
| READ CYCLE        | •                                   |         | •         | •                | •    | •    |
| t <sub>RC</sub>   | Read Cycle Time                     | 12      |           | 15               |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid               |         | 12        |                  | 15   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change       | 3       |           | 3                |      | ns   |
| t <sub>ACE</sub>  | CE LOW to Data Valid                |         | 12        |                  | 15   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid                |         | 6         |                  | 7    | ns   |
| t <sub>LZOE</sub> | OE LOW to Low Z <sup>[6]</sup>      | 0       |           | 0                |      | ns   |
| t <sub>HZOE</sub> | OE HIGH to High Z <sup>[6, 7]</sup> |         | 6         |                  | 7    | ns   |
| t <sub>LZCE</sub> | CE LOW to Low Z <sup>[6]</sup>      | 3       |           | 3                |      | ns   |
| t <sub>HZCE</sub> | CE HIGH to High Z <sup>[6, 7]</sup> |         | 6         |                  | 7    | ns   |
| t <sub>PU</sub>   | CE LOW to Power-Up                  | 0       |           | 0                |      | ns   |
| t <sub>PD</sub>   | CE HIGH to Power-Down               |         | 12        |                  | 15   | ns   |
| t <sub>DBE</sub>  | Byte Enable to Data Valid           |         | 6         |                  | 7    | ns   |
| t <sub>LZBE</sub> | Byte Enable to Low Z                | 0       |           | 0                |      | ns   |
| t <sub>HZBE</sub> | Byte Disable to High Z              |         | 6         |                  | 7    | ns   |
| WRITE CYCLE       | [8]                                 |         |           |                  |      |      |
| t <sub>WC</sub>   | Write Cycle Time                    | 12      |           | 15               |      | ns   |
| t <sub>SCE</sub>  | CE LOW to Write End                 | 9       |           | 10               |      | ns   |
| t <sub>AW</sub>   | Address Set-Up to Write End         | 8       |           | 10               |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End         | 0       |           | 0                |      | ns   |
| t <sub>SA</sub>   | Address Set-Up to Write Start       | 0       |           | 0                |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                      | 8       |           | 10               |      | ns   |
| t <sub>SD</sub>   | Data Set-Up to Write End            | 6       |           | 8                |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End            |         |           | 0                |      | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z <sup>[6]</sup>     | 3       |           | 3                |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z <sup>[6, 7]</sup>  |         | 6         |                  | 7    | ns   |
| t <sub>BW</sub>   | Byte Enable to End of Write         | 8       |           | 9                |      | ns   |


Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> and 30-pF load capacitance.

At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZOE</sub> is less than t<sub>LZCE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any given device. t<sub>HZCE</sub>, and t<sub>HZWE</sub> are specified with a load capacitance of 5 <u>pF</u> as in <u>part (b)</u> of AC <u>Test Loads</u>. <u>Transition is measured ±500 mV from</u> steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

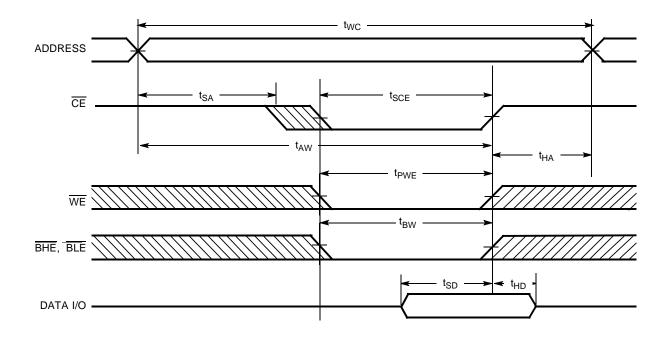


### **Switching Waveforms**

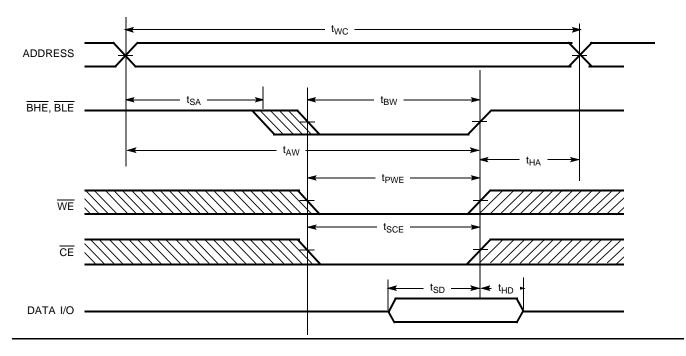




- 9. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u> and/or <u>BHE</u> = V<sub>IL</sub>.


  10. <u>WE</u> is HIGH for read cycle.

  11. Address valid prior to or coincident with <u>CE</u> transition LOW.

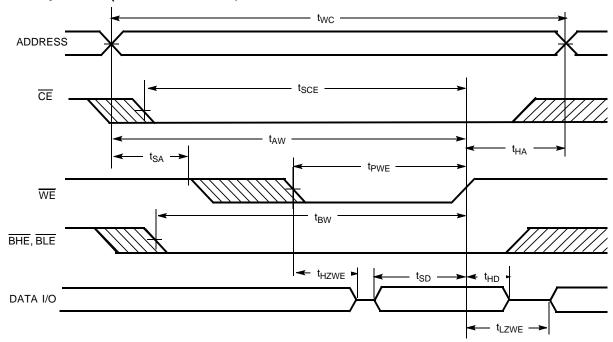



# Switching Waveforms (continued)

# Write Cycle No. 1 ( $\overline{\text{CE}}$ Controlled) $^{[12, 13]}$



# Write Cycle No. 2 (BLE or BHE Controlled)




- 12. Data I/O is high impedance if OE or BHE and/or BLE= V<sub>IH</sub>.
  13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.



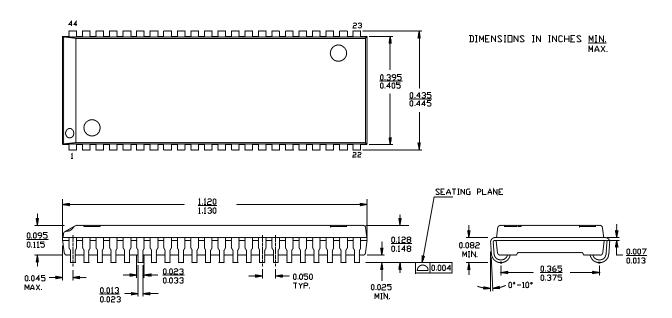
# Switching Waveforms (continued)

# Write Cycle No. 3 (WE Controlled, LOW)



#### **Truth Table**

| CE | OE | WE | BLE | BHE | I/O <sub>1</sub> -I/O <sub>8</sub> | I/O <sub>9</sub> -I/O <sub>16</sub> | Mode                       | Power                      |
|----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------|
| Н  | Х  | Х  | Χ   | Χ   | High Z                             | High Z                              | Power-Down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | L   | L   | Data Out                           | Data Out                            | Read - All bits            | Active (I <sub>CC</sub> )  |
|    |    |    | L   | Н   | Data Out                           | High Z                              | Read - Lower bits only     | Active (I <sub>CC</sub> )  |
|    |    |    | Н   | L   | High Z                             | Data Out                            | Read - Upper bits only     | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | L   | Data In                            | Data In                             | Write - All bits           | Active (I <sub>CC</sub> )  |
|    |    |    | L   | Н   | Data In                            | High Z                              | Write - Lower bits only    | Active (I <sub>CC</sub> )  |
|    |    |    | Н   | L   | High Z                             | Data In                             | Write - Upper bits only    | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Х   | Х   | High Z                             | High Z                              | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |
| L  | Х  | Х  | Н   | Н   | High Z                             | High Z                              | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |


# **Ordering Information**

| Speed (ns) | Ordering Code    | Package<br>Name | Package Type                 | Operating<br>Range |
|------------|------------------|-----------------|------------------------------|--------------------|
| 12         | WCFS1016C1C-JC12 | J               | 44-Lead (400-Mil) Molded SOJ |                    |
| 15         | WCFS1016C1C-JC15 | J               | 44-Lead (400-Mil) Molded SOJ | Commercial         |



# **Package Diagrams**

#### 44-Lead (400-Mil) Molded SOJ J







| Document Title: WCFS1016C1C 64K x 16 Static RAM       |         |     |               |  |  |
|-------------------------------------------------------|---------|-----|---------------|--|--|
| REV. Issue Date Orig. of Change Description of Change |         |     |               |  |  |
| **                                                    | 4/15/02 | XFL | New Datasheet |  |  |